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On the eigenvalues of S .  n for arbitrary spin in a constant 
magnetic field 

J Jayaramant and Marcus Antonius Barbosa de Oliveira$ 
Departamento de Fisica, CCEN, Universidade Federal da Paraiba, 58.00O-Joiio Pessoa, 
Paraiba. Brazil 

Received 28 January 1988 

Abstract. Utilising the intimate connection of a charged particle in a homogeneous magnetic 
field to that of a harmonic oscillator, we demonstrate explicitly that the eigenvalue spectrum 
for the matrix operator S. m for arbitrary spin in a uniform magnetic field in the z direction 
is governed, for its discrete part, by that of a Hermitian matrix defined on the space of 
the particle number and spin operators and is thus constrained to be real for any intensity 
of the external magnetic field. The present analysis generalises to arbitrary spin our 
previously reported results applied to the case of a spin-1 particle. 

1. Introduction 

In an earlier comment (Jayaraman and de Oliveira 1985) we demonstrated that the 
eigenvalue spectrum for spin 1 of the matrix operator S .  7r where S, ( i  = 1,2,3) are 
the spin matrices, n = -iV - eA the generalised momentum (we set c = h = l ) ,  e the 
charge and {A,,, A }  = (0, $H(-y ,  x, 0)) the 4-vector potential for a constant magnetic 
field H in the z direction, is purely real for any intensity of H, thereby removing a 
misconception existing in the literature (Weaver 1978) that some of the eigenvalues 
can indeed become complex for sufficiently intense H. Here we extend the results to 
the case of arbitrary spin, demonstrating that the eigenvalue spectrum of S - 7r is purely 
real for any spin and for any intensity of H. 

Transforming the problem for arbitrary spin to that of a harmonic oscillator 
(Mathews 1974, Mathews and Venkatesan 1986) we demonstrate explicitly in § 2 in a 
parallel way to that presented earlier for the spin-1 case (Jayaraman and de Oliveira 
1985) that such a conversion leads to a Hermitian matrix defined on the space of the 
particle number and spin operators which governs the discrete part of the spectrum 
for any intensity of the external magnetic field, thus constraining the eigenvalues to 
be purely real. Though the transcription of our general results here to the case of 
spin-; can be handled directly and compared with those of Weaver’s analysis for spin-f 
(Weaver 1978), and following analogous reasons explained by us in detail for the 
spin-1 case (Jayaraman and de Oliveira 1985) the incorrectness of the latter’s results 
admitting some complex eigenvalues for sufficiently intense H established, we skip 
this comparison here. In 0 3 we present a brief discussion of the implications of our 
results on the energy eigenvalue spectrum associated with arbitrary spin Hamiltonians 
in relativistic theories, interacting with a constant magnetic field. 
f Present address: Department of Physics, University of Illinois at Chicago, Chicago, IL 60680, USA, 
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2. The nature of the eigenvalue spectrum of S .  ?I for any spin 

We start with the proposed eigenvalue problem 

s.  M x ,  Y ,  z) = A,+(x, Y ,  z )  (1) 

with S = (SI,  S2, S,)  being the conventional spin-s angular momentum matrices. 
Noting that the operator 7r3= -id/dz commutes with everything in S .  ?I we set 
+ ( x ,  y ,  z) = 4 ( x ,  y )  exp( ip3z) ( -oo<p3<~)  in (1) so that + ( x ,  y )  satisfies 

[ t ( S + a ' + S - a - ) + S , a , l 4 ( x , Y )  = i , d ( x , y )  h, = (2eH)- ' l2A,  ( 2 )  

where S ,  = SI i i s 2  and 

aT = ( 2 e ~ ) - ' / ~ r ,  = ( 2 e ~ ) - " ' ( 7 r ~  rti7r2) = ( a * ) +  (3) 
with ~ ~ = ( 2 e H ) - " ~ p ~  being any fixed real number. The operators a* together with 
the number operator N,  defined by 

N, =a'a-=(2eH)-'(.ir:+rr:)-b 7r2 = 7r:+ 7r;+ 7r: (4) 

satisfy the simple harmonic oscillator algebra 

[ a - ,  a+]- = 1 [ N,, U " ] -  = T u " .  

In terms of the mutually commuting simple harmonic oscillator operators in the x 
and y directions, defined by 

the operators U' and No of equations ( 3 ) - ( 5 )  take their explicit forms: 

N, = 4( N, + N~ - L,)  (8) 
1 a'=--(a:Tiaz) Jz 

where 

a a L, = -i(a:a;-a:a;) = -ix-+iy-. 
ay ax (9) 

Apart from the spin degrees of freedom involved in (2), the operators aF effectively 
carry, in view of the first of the equations in (8), just one degree of freedom though 
the wavefunction 4 ( x ,  y )  contains obviously two degrees of freedom. However, 
defining a second set of harmonic oscillator operators b' by 

[ b - ,  b']- = 1 

Nb = b'b- = ;( N, i- N, i- L, ) 

[ N b ,  b T ] - = r b 7  

so that (8) and ( loa)  constitute a unitary transformation from the old set ( a ; ,  U : )  to 
the new set (a * ,  b'), it is evident that b' together with aT of (2) complete the total 
of two degrees of freedom. Also, just as the old set of operators (a : ,  N,)  and ( a ; ,  IVY) 
commute mutually so do the new sets ( a T ,  N o )  and (b', Nb) as can be directly verified. 
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Defining now a complete set of orthonormal states in the space of the mutually 
commuting set of operators N,(+n, = n),  Nb(+nb) and S2  = S ; + S : + S : ( + ~ ( S +  1))  by 

n, n’, nb, nb=O, 1,2,  . .  . ;  a,, a j = s , .  . . , -s (lib) 
it is evident that the number eigenvalue n in 

N J n a , ;  n b ) = n l n a , ;  nb) n =0 ,  1 ,2 , .  . . 
is infinitely degenerate as n does not depend on nb. Also, since the operators b” of 
( l o a )  simply commute with everything in S .  II of ( l ) ,  i.e. 

[b’,S. I I ] - = O  (13) 
it is readily inferred that, in the expansion of 4(x, y)  of (2) in terms of the complete 
set of basis states Ina,)@lnb), the operators aT and SI in (2) do not affect the quantum 
number nb at all. Hence is of (2) is infinitely degenerate with nb taking the infinite 
set of values 0 , 1 , 2 , .  . . . For an explicit construction of the Schrodinger wavefunctions 
for the simultaneous eigenkets of N, and L, = Nb - N, (which equality is a simple 
consequence of (8) and (1Oc)) the reader is referred to the elegant work of Mathews 
(Mathews 1974, Mathews and Venkatesan 1986). In the rest of our analysis here we 
will suppress the label nb in / n a ,  ; nb) as it serves no further role than endowing infinite 
degeneracy for is of (2) as explained above. 

Now, the following properties of In, az) follow readily: 

Nln ,  4 = nln, a,) (14a) 

a-10, a,) = 0 (14b) 

a-In, a,) = J;; In - 1, a,) 

a+ /n ,  a,) = ( n  + 1)”*(n + 1, a,) 
( 1 4 4  

(14e) 
&In, a i )=a i ln ,  ai) 

S+ln, s) = 0 

S+J n, s - 2) = [ (2s - 1) - 21 1 / 2 1  n, s - 1) 

S+ln, s - 3) = [(2s - 2) 3]1’2/n, s - 2) 

S+ln, s - 1) = (2s * 1)1’21n, s) 

. . ,  

S+ln, -s + 3) = [(2s - 3) * 4]1’21n, -s + 4) 

S+ 1 n, - s + 1) = [ (2s - 1 ) * 21 1’21 n, - s + 2) 

S-(n, s) = (2s 0 I)’/*ln, s - 1) 

S-/n, s - 2) = [(2s -2)  31’/~1n, s -3) 

S+/n,  - s+2)=[ (2s -2 )  311/*/n, - s+3)  

S+ln, - s ) = ( 2 s .  1)1/21n, - s + l )  

S - (n , s -1 )=[ (2s -1 )  . 2 1 ” ~ ( n , s - 2 )  

S-In, s -3 )=[ (2s -3 )  -4]1’21n, s -4)  . . .  (17) 

S-In, - s+3)=[ (2s -2 )  3]1’2(n, - s+2)  

~ - l n ,  - s + 1 ) = ( 2 s .  1)’I21n, -s) 
S-I n, -s + 2) = [(2s - 1) 21 ‘”1 n, -s + 1) 

S-In, -s) = 0 

(n’, ajln, ai)= S n , n a u , m ,  n ’ , n = 0 , 1 , 2  , . . .  ; a , , a j = s  , . . . ,  -s. (18) 
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Expanding q5(x, y )  of ( 2 )  in terms of the basis In, c y , ) ,  we have the expansion 

where cne, are the expansion coefficients. Since cne, for n < 0 do not find a place in 
(19) we have that 

C n u ,  = 0 n <O.  (20) 

Now it follows directly that S .  n commutes with N - S,  but not with N and S,  
separately, though N and S, commute among themselves (see the commutation 
relations ( 2 7 a - d )  in Jayaraman and de Oliveira (1985) together with equation (4) 
here). This means that the eigenvectors 4(x, y )  in ( 2 )  can be labelled by the eigenvalues 
of N - S 3 ,  i.e. by the values of n - cy, which implies that cnu, of (19) should occur for 
the same values of ‘ n  -a,’ for 4(x, y )  of ( 2 ) .  That this turns out to be the actual case 
follows straight away by substituting (19) in ( 2 )  and making use of the properties 
(14)-(18). In fact we obtain, after a considerable simplification, a set of algebraic 
equations for the ( 2 s +  1) coefficients c,,, and 
c( , , -~~) ( -~)  (all with the same value n - s of ‘ n  - cy,’) for all n = 2s, 2s + 1,2s + 2 ,  . . . , etc, 
which can be written in the form of the following eigenvalue equation of a (2s + 1) x 
(2s+ 1) matrix Aforthecolumnvector c = (c,,, c ( , - ~ ) ( ~ - ~ ) ,  . . . , c ( , - ~ ~ + ~ ~ ( - ~ + ~ ) ,  

c ( , , - ~ ) ( % - ~ ) ,  . . . , 

c( n -2s 1 ( - s 1 1 : 
Ac = x,c (21) 

and the matrix A is given explicitly by 

A =  

- 0 0 . . .  0 0 
G 

2 sa3 

J ( 2 s  - 1)2( n - 1 )  - 0 . . .  0 0 
G 

2 ( s - l ) a ,  2 
J ( 2 s - 1 ) 2 ( n - l )  

2 
J(  2s - 2)3( n - 2 )  

2 
0 (s -2 )a3  . . .  0 .  0 

0 0 ( s - 3 ) a 3  . . .  0 0 
v ‘ ( 2 ~ - 2 ) 3 ( n - 2 )  

2 

2 s ( n  - 2s + 1 
2 

0 0 0 0 . . .  ( - s + l ) a ,  

J2s (n  -2s  + 1 )  
2 

0 0 0 . . .  -sa, 0 

n = 2 s ,  2s+ 1 , .  . , . ( 2 2 )  

As A is Hermitian (in fact, real and symmetric) its eigenvalues is are real for any 
intensity of the external magnetic field H and for all n = 2s,  2s  + 1, . . . , etc, and can 
be obtained by the resolution of the characteristic equation IA - i s I l  = 0 but is not 
attempted here. 

However, the cases n = 0, n = 1 , .  . . , n = 2 s  - 2 and n = 2s - 1 occur as special ones 
and the effective dimensionality of the matrix A in these cases is respectively one, two, 
three,. . . , (2s - 1) and 2s by virtue of (20). We now note the important point that, in 
all these exceptional cases, the matrix A is also Hermitian and hence the eigenvalues 
is are constrained to be real for any intensity of H. 
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The above completes the proof of our assertion that the spectrum of eigenvalues 
of S .  w is purely real for all n = 0, 1 ,2 , .  . . , and for any intensity of the external 
magnetic field H. 

3. Discussion 

Our work here establishing the reality of the eigenvalue spectrum of S - TT for arbitrary 
spin in a constant magnetic field has served to remove the misconception existing in 
the recent literature (Weaver (1978) for s = 1 and s = 5 )  that this spectrum also includes, 
for some values of n s 2s - 1, complex values for sufficiently intense magnetic fields. 
The pure reality of the spectrum of S -  rr demonstrated here, though for a constant 
magnetic field, is gratifying to start with in its beneficial implications on the nature of 
eigenvalues of higher-spin relativistic Hamiltonians. Considering, for example, rela- 
tivistic wave equations for unique spin s in the Schrodinger form i (8 /8 t )9  = XV in 
interaction with a constant magnetic field in the z direction, the choice of a specific 
anomalous coupling dictated by the commutativity of S .  rr with the operator 0 = 
r2 - 2eS3H or, which is the same, with N, - S3 in view of (4) such that the Hamiltonian 
X (which is a function depending on S .  TT and 0) commutes with S * rr and 0, it is 
clear from the present work that the contribution to the energy eigenvalues from the 
factors of S .  rr, and also 0 in X can only be real. Under these conditions, if the 
energy spectrum could still include complex values for sufficiently intense H, this may 
be due to the specific construction of the Hamiltonian not being Hermitian in the 
ordinary sense but only with respect to a relativistically invariant scalar product 
involving a metric operator as, for example, in the case of the Sakata-Taketani (Taketani 
and Sakata 1940) Hamiltonian XsT for spin 1 treated by Weaver (1976) with the choice 
of a specific anomalous coupling with a constant magnetic field such that the mutually 
commuting S .  rr and 0 also commute with XsT, a function of the former operators. 
It is of considerable interest to apply the direct procedure of this paper to reinvestigate 
the precise nature of the energy eigenvalue spectrum of XsT for that particular 
anomalous coupling of Weaver (1976) with a constant magnetic field and, as well, 
varying the anomalous coupling parameter with the objective of possibly obtaining a 
causal coupling, i.e. a specific anomalous coupling for which the energy spectrum is 
purely real (see, for example, Mathews (1974) for the spin-1 Proca theory and Prab- 
hakaran and Seetharaman (1973) for the spin-1 Shay-Good (Shay and Good 1969) 
theory) and still possibly extend the notion of a causal coupling to different unique 
spin-; theories in the Schrodinger form i (8 /8 t )9  = X9, as, for example, of Weaver et 
a1 (1964), Mathews (1966a, b), Moldauer and Case (1956) and Guertin (1974), in 
interaction with a constant magnetic field. The results of our investigations on these 
questions will be reported separately. 
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